S4P Users Guide

A guide for users of the Simple, Scalable, Script-Based, Science
Processor (S4P)

September 2008

Document Version 1.0.0

Chris Lynnes, NASA
Stephen Berrick, NASA

S4P Users Guide: Table of Contents

Table of Contents

1. INTRODUCTION

1.1 DESIGN GOALS 5
1.1.1 SIMPLICITY 6
1.1.2 THE 80/20 RULE 6
1.1.3 "USE THE OS, LUKE!" 6
1.1.4 DESIGN-FOR-TROUBLE 6
1.1.5 TRANSPARENCY 6
1.1.6 KEEP THINGS TOGETHER 6
1.2 S4P FEATURES 6
1.2.1 STATION (FORMERLY, STATIONMASTER) 7
1.2.2 MONITORING STATIONS 7
2. ARCHITECTURAL OVERVIEW 9
2.1 ASSEMBLY-LINE PARADIGM 9
2.2 STATION COMPONENTS 9
2.2.1 WORK ORDERS 10
2.2.2 LoGFILES 11
2.2.3 STATION LOG 11
224 CHAIN LOG 11
2.2.5 PROCESSING CODE 12
2.3 PROCESSING A WORK ORDER 12
2.4 STATION MONITORING 14
3. S4P INSTALLATION 15
3.1 INSTALLATION REQUIREMENTS 15
3.2 BASIC INSTALLATION 15
3.3 CUSTOMIZED INSTALLATION 16
3.3.1 CUSTOMIZED INSTALLATION EXAMPLE 17
3.4 WHAT’S INCLUDED IN S4P? 17
4. THE STATION PROGRAM 20
4.1 RUNNING STATION 20
4.2 STATION CONFIGURATION BASICS 21
4.2.1 COMMANDS TO RUN (%CFG_COMMANDS) 21
4.2.2 DOWNSTREAM WORK ORDERS (%CFG_DOWNSTREAM) 23
4.3 PUTTING IT ALL TOGETHER 24
4.4 COMMON OPTIONAL STATION PARAMETERS 24
44.1 STATION ROOT ($CFG_ROOT) 25
4.4.2 POLLING INTERVAL ($CFG_POLLING INTERVAL) 26
4.4.3 STOPINTERVAL ($CFG_STOP_INTERVAL) 26
4.4.4 END INTERVAL ($CFG_END_JOB_INTERVAL) 27
9/25/2008 2

S4P Users Guide: Table of Contents

4.4.5 PROCESS DEADLINE ($CFG_DEADLINE) 27
4.4.6 STATION DISABLE ($CFG_DISABLE) 27
447 INPUT WORK ORDER SUFFIX ($CFG_INPUT WORK_ORDER_SUFFIX) 27
4.4.8 OUTPUT WORK ORDER SUFFIX (§CFG_OUTPUT WORK_ORDER_SUFFIX) 28
449 WORK ORDER PATTERN ($CFG_WORK_ORDER_PATTERN) 28
4410 MAXIMUM NUMBER OF JOBS ($CFG_MAX_CHILDREN) 28
44.11 S4P USER ($CFG_USER) 29
4.4.12 S4P GROUP ($CFG_GROUP) 29
4.4.13 S4P UMASK ($CFG_UMASK) 29
4.4.14 S4P HOST ($CFG_HOST) 30
4.4.15 WORK ORDER SORT ($CFG_SORT_JOBS) 30
44,16 WORK ORDER TYPE RESERVATIONS (%CFG_RESERVATIONS) 31
4.5 COMMON OPTIONAL GUI PARAMETERS 32
4.5.1 STATION NAME ($CFG_STATION NAME) 32
452 MAXIMUM JOB TIME BY WORK ORDER TYPE (%CFG_MAX_JOBTIME) 33
4.5.3 FAILURE HANDLERS (%CFG_FAILURE_HANDLERS) 33
4.5.4 STATION MANUAL OVERRIDES (%CFG_MANUAL OVERRIDES) 34
4.5.5 STATION INTERFACES (%CFG_INTERFACES) 35
4.6 USEFUL, YET LESS COMMON OPTIONS 35
4.6.1 IGNORE EMPTY WORK ORDERS ($CFG_IGNORE_EMPTY_FILES) 36
4.6.2 IGNORE DUPLICATE WORK ORDERS ($CFG_IGNORE_DUPLICATES) 36
4.6.3 CASE-BASED REASONING LOG ($CFG_CASE_LOG) 36
4.6.4 MAXIMUM FAILURES ($CFG_MAX_FAILURES) 37
4.6.5 USE TOKENS (%CFG_TOKEN) 38
4.6.6 %CFG_AUTO_RESTART 38
4.7 OBSCURE OPTIONS 38
4.7.1 FAILED WORK ORDER DIRECTORY ($CFG_FAILED WORK_ORDER_DIR) 38
472 STATION LOG FILE NAME ($CFG_LOGFILE) 39
4.7.3 STATION COUNTER LOG FILE NAME ($CFG_COUNTER _LOGFILE) 39
4.7.4 CHILD PROCESS SLEEP ($CFG_CHILD_SLEEP) 39
47.5 RENAME RETRIES AND RETRY INTERVAL ($CFG_RENAME_RETRIES,
$CFG_RENAME_RETRY_INTERVAL) 39
47.6 VIRTUAL JOBS (%CFG_VIRTUAL JOBS, $CFG_VIRTUAL FEEDBACK) 40
5. S4P GRAPHICAL USER INTERFACES 41
41
5.1 ANATOMY OF THE S4P MONITOR (TKSTAT.PL) 41
5.1.1 TITLE BAR 41
5.1.2 STATION BUTTONS 42
5.1.3 JOB BOXES 43
5.1.4 QUEUED, MAX, OK, AND FAIL TALLIES 43
5.1.5 CONTROL BUTTONS 44
5.1.6 ADDING CUSTOM CONTROL BUTTONS 44
5.1.7 COMMAND LINE OPTIONS 45
5.1.8 X RESOURCES 45
5.2 CONTROLLING STATIONS WITH STATION MONITOR 46
5.2.1 ANATOMY OF THE STATION MONITOR 48
9/25/2008 3

S4P Users Guide: Table of Contents

5.3 CONTROLLING JOBS WITH JOB MONITOR 49
5.4 RELATIONSHIP BETWEEN STATION MONITOR AND JOB MONITOR 49
6. APPLICATION TO AUTOMATED SCIENCE PROCESSING 50
6.1 SIMPLE PROCESSING 50
6.2 DEALING WITH COMPLICATED PRODUCTION RULES 51
6.3 FILE TRACKING 51
7. GETTING STARTED 53
7.1 CREATE YOUR S4P DIRECTORY STRUCTURE 53
7.2 CREATE YOUR STATION CONFIGURATION FILES 53
7.2.1 'WORK ORDER / EXECUTABLE MAP 53
7.2.2 DOWNSTREAM WORK ORDER MAP 53
7.2.3 OTHER CONFIGURATION PARAMETERS 54
7.3 START UP STATION DAEMONS. 54
7.4 SEED UPSTREAM STATIONS WITH WORK ORDERS. 54
8. DESIGNING STATIONS AND SYSTEMS 55
8.1 S4P MODULES FOR STATION CODE 55
8.2 SIMPLE FILTERS 57
8.3 SIMPLE PROCESS CONTROL FILES 57
8.4 COMPLEX PRODUCTION RULES 58
9. S4P APPLICATIONS 59
9.1 S4PM 59
9.2 S4PA 59
APPENDIX A. ACRONYMS 60
9/25/2008 4

S4P Users Guide: 1. Introduction

1. Introduction

Data processing costs too much. This fact was brought home during the development of
the systems to process data from the Terra platform. Integration of the science
algorithms has turned out to be more difficult than expected, leading to higher costs,
reduced capability and schedule slips. This has motivated an evolution in the Earth
Observing System Data Information System (EOSDIS) toward Science Investigator-led
Processing Systems (SIPS). In mid-1998, the Goddard Earth Sciences Data and
Information Services Center (GES DISC) began developing a simplified processing
system as a risk mitigation and a potential resource for future SIPS.

Many science processing systems have simply grown up around the algorithms they run.
Although simple and robust, they often are specific to the algorithm. On the other hand,
the EOSDIS Core System (ECS) was designed to be general, resulting in a large,
complex mix of commercial and custom software. Recent successful large systems
include the SeaWiFS Data Processing System and the TRMM Science and Data
Information System. While developed for specific disciplines, they are in fact relatively
easy to generalize to other algorithms. One thing that these have in common is the use of
commercial databases (often Sybase), and in most cases commercial system management
tools (e.g. AutoSys).

In contrast, many simpler systems, such as the EROS Data Center AVHRR 1KM system,
rely on a simple directory structure to drive processing, with directories representing
different stages of production. The system passes input data to a directory, and the output
data is placed in a "downstream" directory.

The GES DISC's Simple, Scalable, Script-based, Science Processor (S4P) is based on the
latter concept, but with modifications to allow varied science algorithms and improve
portability. It uses a factory assembly line paradigm: when work orders arrive at a
station, an executable is run, and output work orders are sent to downstream stations.

1.1 Design Goals

Based on the above premises, the following design goals were used in the development of
S4P as well as all the projects based on the S4P core (such as S4PM and S4PA):

9/25/2008 5

S4P Users Guide: 1. Introduction

1.1.1 Simplicity

In all code, a concerted effort must be made to keep it simple. Non-comment lines of
code should be kept as small as possible without becoming cryptic. (Comments, on the
other hand, should be used liberally.)

1.1.2 The 80/20 Rule

There is a rule of thumb that one often achieves 80% of the functionality with the first
20% of the effort. This tells us to move on to the next item when we have achieved that
80% functionality, coming back for more only if time permits.

1.1.3 "Use the OS, Luke!"

Years and years of development have gone into the operating system which is optimized
for the machine it is on. Thus, if you can use the operating system to achieve something
for you (e.g. files, directories, UNIX commands), do not bother to reinvent it. The only
exception is that if you know with absolute certainty that (a) the OS solution will not
meet performance requirements and (b) your solution will.

1.1.4 Design-For-Trouble

Things will go wrong in any system. Therefore, the design should have features to enable
troubleshooting built in from the start, not simply added on when things don't work. This
does not necessarily mean automated failure recovery, simply ensuring that human
operators can easily and quickly determine what has gone wrong.

1.1.5 Transparency

Following from the Design-for-Trouble principle, the operation of the system should be
as transparent as possible. That is to say, operational staff and sustaining engineers
should be able to see easily everything that is going on, the contents of data moving
hither and yon, etc. (This is the principle behind the use of work order files, rather than
socket messages, which can disappear into the ether.)

1.1.6 Keep Things Together

Troubleshooting is easier if everything (e.g., input, output, templates, configuration files,
logs, etc.) can be found in one place.

1.2 S4P Features

Below are listed a number of features of the S4P system.

9/25/2008 6

S4P Users Guide: 1. Introduction

1.2.1 Station (formerly, Stationmaster)

Station is the linchpin of the S4P. It is a refactored version of and replacement for
Stationmaster (the old Stationmaster script, stationmaster.pl, should be considered
deprecated and will likely be removed in a future release). The s4p_station.pl script that
implements Station has a number of configurable features to provide the necessary
flexibility to construct any arbitrary processing system.

* Adjustable polling interval
* Run different executables based on job type
* Child process limits
* Total number of running and failed children
* Number of running children
* Number of failed children (will stop forking jobs when too high)
* Send output work orders to multiple downstream stations
* Send output work orders to different downstream stations based on output job type
* Run a user-defined failure analysis program on job failure, based on input job type
* Maintain logs of the full history of a given work order (including logs for upstream
stations)
* Job sorting and prioritization:
* By work order name
e By arrival time (FIFO)
* By input job type
* By custom function

1.2.2 Monitoring Stations

Two tools, the S4P Monitor and the Job Monitor work together to monitor a system of
stations and control individual stations and jobs.

* Monitor a group of stations for running, failed and pending jobs
* Start and stop a station
* Job Control

* Terminate a job

* Suspend a job

* Resume a job

* Restart a failed job

In addition, station-specific scripts of various types can be developed and hooked into the
S4P Monitor and Job Monitor interfaces. This is done simply by associating a Button
name with a command-line executable in a configuration file.

e Failure Handlers work with failed job directories, providing a way to recover

from or otherwise handle a failure case. This is particularly useful for specific
cleanup tasks.

9/25/2008 7

S4P Users Guide: 1. Introduction

* Manual Overrides work with currently running directories. These are used, for
example, to release jobs that are waiting for something. (Note that this requires
the scripts to do some signaling to each other in the job directory.)

* Station-specific interfaces can be attached to any station, allowing access, for
example to additional GUIs.

9/25/2008 8

S4P Users Guide: 2. Architectural Overview

2. Architectural Overview

2.1 Assembly-Line Paradigm

The process of using science algorithms to create products is modeled as a factory
assembly line, with a number of stations along the way. Two key improvements on a
real factory are: (1) multiple instances of a job can be executed simultaneously at a given
station, and (2) the output can be sent to more than one downstream station
simultaneously.

Simply stated, a working station is a Unix or Windows directory with 2 key components:

1. A configuration file (normally named station.cfg). The two essential items in
the configuration file are a map of tasks to execute on arrival of input work orders,
and a map of downstream stations to which output work orders are sent.

2. A daemon monitoring the station for input work orders. A program called Station
(actually, s4p station.pl) is provided for this purpose; all that need be done is
to start up a Station for each station.

Once the set of stations has been established and configured, the system is started by
running Station in each station of the system. When the first input work order is
deposited in the upstream station, the Station program in that station does the following:

Detects the work order

Looks up the appropriate command to run for that work order type
Makes a temporary subdirectory for executing the job

Changes directory into the that subdirectory

Forks off a child Station process to run and monitor the command
When done, it looks up the output work orders in the downstream map
Sends work orders to the downstream stations

NNk W=

2.2 Station Components

A station in S4P is a directory within which a Station daemon is running. The types of
work orders that Station daemon looks for and what it does are dictated by configuration
parameters in the station configuration file. By default, this file is named station.cfg and
this will be the assumption throughout this document. In addition, other behaviors and
characteristics of the station are set in the station configuration file such as the name of
the station that gets displayed in the graphical user interface, the polling frequency, and
many others. Section 4 on the Station program describes the options available in the
station configuration file.

9/25/2008 9

S4P Users Guide: 2. Architectural Overview

Beyond the Station program itself, there are several important components of S4P
stations and these are discussed below.

2.2.1 Work Orders

Work orders provide the input for a job in the station. Each work order is processed in
turn (there are ways of configuring the sort order). Work orders are placed in the station
by upstream stations or via some other mechanism outside of S4P. There are no
restrictions on the content of work order; it can be what ever the code running in the
station expects. By convention, however, work orders should be ASCII text files since
transparency is a major tenet of the S4P philosophy. If you see a work order in a station
directory, it either means that a Station daemon isn’t running or that the work order
simply hasn’t been processed yet.

By default work order file names have four components separated by a period character:
a prefix, a job type, a job identifier, and a suffix. Thus, work order file names have this
form:

<prefix>.<jobtype>.<jobid>.<suffix>

Work Order Name Component Description

Prefix By default, work order file names have DO as a prefix. See
Section 4.4 for options on overriding this default

Job Type The job type dictates what to run when a work order having

that type shows up in a station. It can be any ASCII string of
characters not including the period character (.). By
convention, job types are all in uppercase. Since job types
dictate what will be run, it is wise to keep job types short and
descriptive.

Job ID A job ID is used to guarantee uniqueness in work order file
names. Typically, it is the machine time or perhaps the
process ID. The only requirement is that it be unique for each
work order of a given type.

Suffix By default, work order file names have wo as the suffix (short
for “work order”). As with the prefix, Section 4.4 on the Station
program describes some ways to modify this default.

Table 2-1. S4P work order file name components.

2.2.1.1 Example Work Order Names

For example:

DO.IMPORT.398983.wo

has a job type of IMPORT and a job ID of 398983 (we presume that it is unique among
all work orders of type IMPORT).

DO.RUN ALG1.2006123201030503.wo

9/25/2008 10

S4P Users Guide: 2. Architectural Overview

has a job type of RUN_ALGI1 and a job ID of 2006123201030503 (which looks like a
timestamp).

2.2.1.2 What Goes Into a Work Order

S4P doesn’t actually care about what content there is in a work order. The only thing S4P
cares about is the name of the work order since that is how it decides what to run on it.
Empty work orders are perfectly valid too (though perhaps not useful).

2.2.2 Log Files

2.2.3 Station Log

There are several log files in S4P. By default, the Station program running in each station
maintains a log file named, by default, station.log (to override this, see Section 4.7.2).
This file lists out work orders processed and notes any failures. All messages are time
tagged.

2.2.4 Chain Log

In addition, any output to standard out (stdout) and standard error (stderr) generated by
the commands running in the station (i.e. the processing code) is saved into a log file
whose name looks like the work order name with .log as the file name extension. For
example, if the work order name was:

DO.RUN ALG1.4983.wo

the log file generated would be named:

RUN_ALG1.4983.log

Two functions are provided with the S4P distribution to facilitate logging of messages to
the chain log file. They are S4P::logger() and S4P::perish. The S4P::logger() function
takes two arguments. The first is a tag indicating the level of severity of the message
(valid choices are “INFO”, “WARNING”, “ERROR”, “FATAL”, and “DEBUG”) and
the second is the message string itself. The message written out to the log file will include
a timestamp and the name of the Perl script generating the message. Note that messages
tagged with “DEBUG” only get written if the environment variable OUTPUT DEBUG
is set to non-zero; otherwise they are ignored.

The S4P::perish() function also writes out a message to the chain log file, but then exits
(dies) afterward. It also takes two arguments. The first is the exit status with which to exit
and the second is the message string. As with S4P::logger(), messages are written along
with timestamps and the scripts generating them.

If the processing in a station generates any output work orders destined for downstream
stations, the log file produced by the processing code gets moved downstream along with

9/25/2008 11

S4P Users Guide: 2. Architectural Overview

the work order itself. New log messages will get appended to the log file. Thus, the log
file grows as the work order with which it is associated is passed from station to station,
hence, the name “chain log”.

2.2.5 Processing Code

Of course, the most important component of any S4P system is the code that actually
carries out the processing in each of the stations making up a string. As suggested by
earlier examples, there are very few restrictions on what processing can be done in S4P.
Below are the assumptions that S4P processing code must meet:

1. S4P interprets an exit code of non-zero to be a failure and an exit code of zero to be
success. Thus, anything that S4P runs in a station needs to adhere to this convention.

2. The file name of the work order is automatically appended to the end of the command
being run. Thus, if the processing code is a script or compiled binary, it should be
prepared to receive the input work order as the last argument. There is no requirement
that the code actually open or read the work order; it can ignore it altogether.

3. For processing code that does read the input work order name, that file name follows
a convention described in Section 4. By default, input work orders have a ‘DO.’
prefix.

4. Processing code may generate one or more output work orders (or none at all). Output
work orders must have (by default) the ‘.wo’ suffix and must not have the ‘DO.’
prefix. See Section 4 for ways of changing this default.

5. There are no restrictions on the actual content of work orders. For the sake of
transparency (a tenet of S4P philosophy), ASCII work orders are much preferred over
binary.

6. Processing code needs to be aware that it is running within a unique subdirectory
below the station directory. This can be important if processing code needs to access
other files (aside from input work order) or directories. The unique subdirectory is
removed once the job completes, therefore, processing code cannot assume that the
job directory is permanent. If files (such as databases) need to be maintained across
runs, they should be placed in the station directory itself or nearby.

2.3 Processing A Work Order

When the Station program detects a work order in its station directory following the
naming convention discussed in Section 2.2.1, it creates a subdirectory with the name of
the work order prefixed with ‘RUNNING’. For example, the work order:

DO.IMPORT.200612140122.wo

would get a subdirectory named:

RUNNING.IMPORT.200612140122

9/25/2008 12

S4P Users Guide: 2. Architectural Overview

That is, the job subdirectory name is taken from the work order name with the ‘DO’
prefix replaced by ‘RUNNING’ and the suffix ‘wo’ removed.

Next, the Station program moves the work order into the new subdirectory created for it,
but at the same time dropping the ‘wo’ suffix. Thus, the work order within the job
subdirectory would actually be:

DO.IMPORT.200612140122

This is important to keep in mind since the process running in the station on the work
order needs to not expect the ‘wo’ suffix in the file name. It won’t be there.

Once the work order is in the job subdirectory, the Station program forks off a child
Station process to execute and monitor that job.

If the job fails, the subdirectory name prefix ‘RUNNING’ is changed to ‘FAILED’ as in:

FAILED.IMPORT.200612140122

This allows one to easily spot failures by simply doing a directory listing in a station
directory.

If the processing succeeds, there may be one or more output work orders generated as a
result. Output work orders must follow this convention:

<jobtype>.<jobid>.wo
as in:
RUN ALGORITHM 1.200612140122.wo

This is somewhat opposite of input work order. For input work orders, the original ‘wo’
suffix is dropped, but the ‘DO’ prefix is kept. For output work orders, the original ‘DO’
prefix is dropped and instead the ‘wo’ suffix is kept. Processing code in stations that
generate output work orders need to keep this in mind when setting their file names.

The Station program will see to it that output work orders are passed on to downstream
stations (if any). We’ll see how to specify this later. In summary:

Work Order Flavor Work Order Example

Work order in a station directory queued up to | DO.IMPORT.200612140122.wo
be run.

Input work order in a job subdirectory being | DO.IMPORT.200612140122
processed.

Output work order in job subdirectory after | RUN_ALGORITHM_1.200612140122.wo
processing has completed.

Table 2-2. S4P work order flavors and examples.

9/25/2008 13

S4P Users Guide: 2. Architectural Overview

2.4 Station Monitoring

Since a S4P processing string is nothing more than directories, subdirectories, and files, it
is very easy to monitor S4P processing by simply listing out the contents of station
directories. As an illustration, running the command:

ls —-F import
on a fictitious Import station directory (in UNIX), might produce something like this:

import.pl*

station.cfg

station.lock

station.log

station.pid

station counter.log
DO.IMPORT.2006121223221.wo
DO.IMPORT.2006121223342.wo
IMPORT.2006121223221.10g
IMPORT.2006121223342.10g
RUNNING.IMPORT.2006121222020/
RUNNING.IMPORT.2006121221821/
FAILED.IMPORT.2006121172927/

Immediately, one can see that there are two jobs running, one job has failed, and there are
two work orders representing two jobs queued up to be run. You probably have guessed
already that the import.pl file is a Perl script that is run to carry out the processing in our
imaginary Import station. The station.pid and station.lock files simply contain the process
ID of the Station process running in this station (some operating systems have a
preference for the PID file; others for the lock file). We have not yet talked about the
station_counter.log file.

If you were to change directories into the FAILED.IMPORT.2006121172927
subdirectory, you would see the debris left there at the time the job failed. By examining
the log files therein, hopefully the problem causing the failure could be resolved.

Because of the simplicity of this structure, it is fairly easy to develop a graphical user
interface (GUI) to display the state of multiple S4P stations comprising an S4P string at
any instant in time. In fact, S4P include a Perl/Tk implementation of just such a GUI. The
programs tkstat.pl and tkjob.pl will be discussed later in Section 5 on S4P interfaces.

9/25/2008 14

S4P Users Guide: 3. S4P Installation

3. S4P Installation

This section describes how to download and install S4P. This document is current as of
S4P 5.15.0.

S4P made available on SourceForge as part of the S4PM distribution at
http://sourceforge.net/projects/s4pm/.

3.1 Installation Requirements

S4P has been successfully installed on SGI machines running IRIX, Sun machines
running Solaris, and Linux machines running Red Hat. It should work on any UNIX
machine. S4P has also been tested successfully on a Window XP machine (using
ActiveState Perl), but the testing here has been very light and recent versions of S4P have
not been regression tested. We would appreciate hearing from those of you who have run
S4P under Windows.

S4P requires Perl 5.6.0 or later (it might work with earlier versions). It also requires the
Perl Tk module.

3.2 Basic Installation

There is only one package to download:
S4P-5.15.0.tar.gz
Download the package into some directory on the machine where you will install S4P.

Version 5.15.0 is assumed in the examples below. Adjust the version portion of the file
names according to the version you are using.

The directory you download this package into is only used for installing S4P and can be
removed later.

Unzip and untar the package file. On Linux, you can untar and unzip with one command:

tar xvzf S4P-5.15.0.tar.gz

On other UNIX machines, you may have to unzip and untar separately:

gunzip S4P-5.15.0.tar.gz && tar xvf S4P-5.15.0.tar

Unpacking this tar file will result in one subdirectory: S4P-5.15.0

9/25/2008 15

S4P Users Guide: 3. S4P Installation

Change directories into the S4P-5.15.0 directory:

cd S4P-5.15.0

For installation of the binaries into the standard system directories on your machine, run
the following:

perl Makefile.PL

make

make test (recommended, but optional)
make install

make clean (optional)

3.3 Customized Installation

You can choose to install S4P into a non standard location. This means that you will need
to specify where the binaries and Perl library modules go directly.

First, you’ll first need to set the environment variable PERLLIB (on Linux, use
PERLSLIB instead) to the alternate location of the libraries. Both the S4P and S4PM
libraries will need to be included (see example below) and you will need to set this
environment variable before you build S4P. The PERLLIB (or PERL5LIB) environment
variables will also have to be set correctly in order to run S4P. Finally, run the following
commands instead of the ones above:

perl Makefile.PL PREFIX=<alternate directory>
make

make test

make install

make clean (optional)

where <alternate directory> determines both where the binaries and libraries are to be
installed. The binaries (scripts and configuration files) will be installed in
<alternate directory>/bin; the = S4P libraries = will be installed into
<alternate directory>/lib/perl5/site _perl/perl5.x.x/. See example below.

Also, if you install the binaries into a non standard directory, the user account under
which S4P will be run will have to include this new location in the PATH environment
variable.

9/25/2008 16

S4P Users Guide: 3. S4P Installation

3.3.1 Customized Installation Example

For example, you wish to install the S4P binaries and libraries under /home/jdoe rather

than in the standard system directories. Follow these steps:

1. Log in as the S4P user that will run S4P.

2. Set the PERLLIB (it may be PERL5LIB if Linux) to where the libraries are to be
installed. For example (in Bourne, Korn, Bash shell or their variants):

export PERLLIB=/home/jdoe/lib/perl5/site perl/5.8.3

3. Run the install:

perl
make
make
make
make

4. In the S4P user’s shell start up scripts (e.g. .bashrc), set the PERLLIB or
PERLSLIB environment variable as above and also set the PA environment

Makefile.PL PREFIX=/home/joe

test
install
clean (optional)

variable to include /home/joe/bin.

The S4P components will be installed into the directories as indicated in Table 3-1 below.

Component Installation Directory
Executable Scripts /homel/jdoe/bin
Configuration Files /homel/jdoe/bin

S4P Perl Library Modules

/homel/jdoe/lib/perl5/site_perl/perl5.8.5

Table 3-1. S4P components and where they would go if alternate location is set to /home/jdoe. Here,

we assume a Linux installation using Perl 5.8.5.

3.4 What’s Included in S4P?

S4P is comprised of Perl scripts (*.pl files) and Perl modules (*.pm files). Below is a
brief summary of most of what’s included. For more details on these and other script and

modules, read the man pages or look at the code itself.

9/25/2008

S4P Users Guide: 3. S4P Installation

S4P File

Description

remove_job.pl

Removes a failed job.

restart_job.pl

Restarts a failed job.

s4p_repeat_work_order.pl

Wrapper script that allows a station to automatically run a job
on a periodic basis by continually recycling work orders.

s4pshutdown.pl

Shuts down all stations in a S4P string.

send_downstream.pl

Sends a work order to the next station downstream.

s4p_station.pl (formerly,
stationmaster.pl)

Runs the Station daemon on a station to poll for incoming work
orders, start up processing on those work orders, and move
any output work orders downstream.

stop_station.pl

Stops a station.

tkjob.pl Perl/TK GUI that allows a user to examine the contents of a job
directory.
tkstat.pl Perl/TK GUI that allows a user to visually monitor activity in

multiple S4P stations and perform troubleshooting.

9/25/2008

Table 3-2. Some of the S4P scripts included.

18

S4P Users Guide: 3. S4P Installation

S4P Module Description

S4P Main S4P Perl module with the core S4P functionality.

S4P::EDOS Contains functions for parsing Level O construction records that
adhere to the CCSDS format.

S4P::FileGroup Along with the S4P::FileSpec module, handles manipulations
of Product Delivery Records (PDRs), a type of file implemented
in Object Data Language (ODL), a precursor to XML. Used
mainly for sites running the EOSDIS Core System (ECS) or
interoperating with ECS via standard Science Investigator-Led
Processing Systems (SIPS) interfaces.

S4P::FileSpec See description for S4P::FileGroup.

S4P::Lexer Provides a generic lexer class.

S4P::MeftFile Contains functions for manipulating ODL metadata files that
are used in the EOSDIS Core System (ECS).

S4P::0dIBlock, These modules are used for manipulating ODL metadata via a

S4P::0dIGroup, data tree model.

S4P::0dIObject,

S4P::0dITree

S4P::PAN Contains functions for manipulating ECS-style Product
Acceptance Notifications (PANSs).

S4P::PCF, S4P::PCFEntry | Contains functions for manipulating ECS-style Process Control

Files (PCFs).

S4P::PDR Contains functions for manipulating Product Delivery Records
(PDRs).

S4P::ResPool Contains functions for creating and using a disk pool
management system, useful for S4P strings that need to
manage disk space. Allocation and de-allocation of disk pools
is provided.

S4P::S4PTk Contains functions used by S4P GUIs.

S4P::Station Contains functions for supporting Station and Job objects.

S4P::StaMon Module used by tkstat.pl for creating a station monitor object.

S4P::Subscription Contains functions for managing subscriptions for online data.

S4P:

:TimeTools

Contains many time manipulation functions.

S4P:

:TkJob

Module used by tkjob.pl for creating a job monitor object.

Table 3-3. Some of the S4P modules included.

9/25/2008

19

S4P Users Guide: 4. Station

4. The Station Program

The Station program is the driver of S4P. It monitors station directories for incoming
work orders, runs configured processing on those work orders, and moves any output
work orders to downstream stations that are monitored by their own Station damons. The
Perl code that implements Station is s4p_station.pl. This new program replaces what was
formerly called Stationmaster (stationmaster.pl).

Note that the —C option for s4p_station.pl will emulate stationmaster.pl behavior.

This same option is available for tkstat.pl as well. The option will likely be dropped
at some point once the old stationmaster.pl script itself is dropped.

An instance of Station monitors only a single station where a station is simply a directory
containing, at a minimum, a station configuration file that dictates how the Station should
behave. By default, this configuration file is named station.cfg. If there are a series of
Station programs running on a series of stations and if these stations pass work orders to
one another, the group of stations is often referred to as an S4P “string”.

4.1 Running Station

Station is run on the command line via this command:

s4p station.pl &

In UNIX, the ampersand forces the process (s4p_station.pl, in this case) to run in the
background. By default, the Station program will monitor the current directory. That is, it
assumes that the current directory is the station directory and contains a station
configuration file named (by default) station.cfg.

To specify the station directory explicitly, use the —d option along with the full or relative
path to the station directory as in:

s4p station.pl -d stations/import &

There are several more rather esoteric options available to Station and the interested
reader can discover them in the s4p_station.pl man page .

If there are more than several stations, typically one starts up the S4P Monitor and

through that interface starts up the individual stations. The S4P Monitor will be discussed
in Section 5.

9/25/2008 20

S4P Users Guide: 4. Station

4.2 Station Configuration Basics

In this section, the most basic station configuration file parameters are discussed:

Parameter Description Section
%cfg_commands What to run for each work order type 4.2.1
%cfg_downstream Where to send any downstream work 422

orders

Table 4-1. Basic station configuration file parameters.

4.2.1 Commands To Run (%cfg_commands)

The %cfg commands is the most important parameter in the station configuration file
since it defines what to run for each work order type that is detected by Station. As
mentioned earlier, each station much be configured for particular work order types.

Work orders that have types other than those defined in the station configuration file will
be placed (by default) in a subdirectory under the station directory named
FAILED.WORK ORDERS and will be visible through the S4P Monitor (Section 4) as a
red job box. If the entire pattern of the work order file name is not recognized, however,
it will be ignored.

The hash keys of %cfg commands are work order types and the hash values are
commands that Station should run when a work order of that type shows up in the station
directory.

The work order itself is always automatically passed to the command as the last
argument.

Below is an example of how to use %cfg commands:

scfg commands = (
'"IMPORT' => '../import.pl',
)7

In the above example, the Station program is configured to execute °.../import.pl” when
ever a work order of type IMPORT is detected. Remember though, the actual work order
name is passed implicitly as the last argument to what ever is set in this hash. It is up to
the script, import.pl in this case, to make use of the work order contents in whatever way
is appropriate (it can even ignore it). Thus, the actual command run is this:

../import.pl workorder filename

where workorder filename is the actual name of the work order. Such work orders
would look like this:

9/25/2008 21

S4P Users Guide: 4. Station

DO.IMPORT.3982989

Note that the .wo file name extension is missing. Why? The reason is that although work
orders by default all start with DO. and end with .wo, once the work order is moved into
a station subdirectory for running, the .wo file name extension is dropped by Station.
Thus, it is important that station scripts don’t rely on the .wo file name extension because
it won’t be there.

The command to run for a particular work order type doesn’t have to be a script or a
binary executable. It can be a UNIX command such as:

scfg commands = (
'"CLEAN' => "find /data -type f -mtime +8 -print -exec /bin/rm
{} \\; && echo'"

’

The above rather complicated command will run the UNIX find command to clean out
data files that order than eight days.

Also note that the executable, import.pl, is specified with a relative path (the ../). A
S4P tradition is to place station scripts (or symbolic links to them) in the station
directories. Since a job running in S4P runs in a subdirectory under the station directory,
the script is always one directory up. If, however, station scripts are locatable in the
user’s path, this is not necessary.

More than one work order type can be configured in a station. For example:

scfg commands = (

'"IMPORT' => '../import.pl',

'RESYNC' => '../resync.pl -d ../database.db',
)

The station configured with the above setting will recognize two types of work orders and
run a unique task depending upon which type is detected. In each case, the work order
file is always passed as the last argument to the command. Thus, for a work order of type
RESYNC, the actual command run is:

../resync.pl -d ../database.db workorder filename

Note that in this example, if a work order shows up in this station with, say, the name
DO.RUN.93839.wo, the basic pattern will be recognized by Station (it starts with a DO
and ends with a wo), but it will end up in the FAILED.WORK ORDERS subdirectory
since its type is not defined in the %cfg_commands hash. If, however, a work order with
the name RUN.98393.wo shows up, it will be ignored since it doesn’t even qualify as a
bona fide work order (it’s missing the wo suffix).

9/25/2008 22

S4P Users Guide: 4. Station

4.2.2 Downstream Work Orders (%cfg_downstream)

After a station processes an input work order, it may generate one or more output work
orders to be sent to other stations. A station is not required, however, to generate any
output work order.

Station uses another hash in the station configuration file to decide where output work
orders go. Below is an example:

scfg downstream = (
'RUN_ALG2' => ['../../run algorithm 2'],
)7

The above hash tells Station that output work orders of type RUN_ALG?2 found in the job
directory after the processing has been completed successfully should be routed to the
station whose directory name is ../../run_algorithm 2. Note that since this is being
viewed from within a job subdirectory under the station directory, the relative path needs
to include the ../.. (this assumes that the run_algorithm 2 station directory is at the same
level as the current station directory. Later on, we’ll discuss a way of setting a default
station root so that this won’t be necessary.

It is up to the script running in a station to generate work orders of the correct type and
with the correct file names. Output work order file names must follow this convention:

<jobtype>.<jobid>.wo

Note that there is no DO. in front. Thus, given the definition of %cfg _downstream above,
a work order that looks like this:

RUN_ALGZ2.983983.wo

Station will detect this output work order, add the DO. suffix and move it into the
run_algorithm 2 station directory.

If a station generates more than one work order, it is easy to accomplish:

scfg downstream = (
'RUN_ALGl' => [
'RUN_ALGZ' => [

./../run_algorithm 1'],
./../run_algorithm 2'],

)7

It is also easy to send the same output work order to two or more downstream stations at
the same time:

scfg downstream = (
'RUN_ALG1l' => ['../../run algorithm 1', '../../track'],
)7

9/25/2008 23

S4P Users Guide: 4. Station

In the above example, the output work order RUN ALGI1 is sent to both the
run_algorithm 1 and track stations.

Output work orders can be sent to a plain old directory that isn’t a S4P station. The
Station program won’t care:

scfg downstream = (
'RUN_ALG1l' => ['../../run algorithm 1', '../../ARCHIVE'],
)7

Above, the RUN_ALGI] is sent to the run_algorithm 1 station as well as a directory
named ARCHIVE that, presumably, saves the work orders for future use.

4.3 Putting It All Together

Below is an example of a complete station configuration file using what we’ve learned so
far for a station named import. This station receives work orders of type IMPORT,
processes them with the script import.pl which outputs a work order of type RUN_ALG?2,
which gets directed downstream to a station named run_algorithm 2. It is named
station.cfg.

scfg commands = (
'"IMPORT' => '../import.pl',

oo ~—

cfg downstream = (
'RUN_ALG2' => ['../../run algorithm 2'],
)7

4.4 Common Optional Station Parameters

The only truly required parameter in the station configuration file is the %cfg commands
hash. If a station produces no output work orders, the %cfg downstream hash is not
needed.

In this section, we will discuss and provide examples for some common optional
parameters that are available for altering the behavior of Station.

9/25/2008 24

S4P Users Guide: 4. Station

Parameter Description Section

$cfg_root Sets station top-level directory. 44.1

$cfg_polling_interval Sets how often Station looks for new 442
work orders

$cfg_stop_interval Sets how often Station looks 443
specifically for STOP work orders

$cfg_end_job_interval Sets how often Station looks 444
specifically for END_JOB_NOW,
SUSPEND_JOB_NOW, and
RESUME_JOB_ NOW work orders

$cfg_deadline Sets maximum time to run a job 44.5

$cfg_disable Disables or enables station 4.4.6

$cfg_input_work_order_suffix Sets the expected input work order 447
suffix

$cfg_output work order_suffix Sets the expected output work order 4438
suffix

$cfg_work_order_pattern Sets the pattern of the entire work 449
order name

$cfg_max_children Sets the maximum number of jobs 4.4.10
that can be run concurrently

$cfg_user Sets the userid of the user that is 44.11
allowed to run the station

$cfg_group Sets the group of users that are 44.12
allowed to run the station

$cfg_host Sets the machine on which the station 44.12
is allowed to run

$cfg_sort_jobs Sets the method by which work 44.15
orders are ordered

%cfg_reservations Predefines number of work orders per 44.16
work order type that can run
concurrently

Table 4-2. Common optional station configuration file parameters.

4.4.1 Station Root ($cfg_root)

The $cfg root parameter is an optional parameter that sets the root directory of the
stations. This allows one to set the %cfg downstream hash like this:

$cfg root = '../..";
scfg downstream = (

'RUN_ALG2' => ['run_algorithm 2'],
)7

rather than like this:

scfg downstream = (
'RUN_ALG2' => ['../../run algorithm 2'],
)7

9/25/2008 25

S4P Users Guide: 4. Station

4.4.2 Polling Interval ($cfg_polling_interval)

The $cfg polling_interval sets the Station polling interval in seconds. The default is ten.
That is, a Station will look for work orders every ten seconds. One reason to increase the
polling interval is if work orders are expected to show up in a station only infrequently or
with very long intervals of time in between. Although unnecessary polling by Station has
low overhead, on heavily loaded systems, this may be significant.

Very rarely will it make sense to lower the polling interval. If you do, be aware that
lowering the polling interval to about three seconds or less may result in “work order
poaching”. This happens when the time it takes Station to make a job subdirectory, move
the work order into that subdirectory, and fork off a Station process to monitor that job
takes longer (on occasion) than the polling interval for that station. What happens is that
while the Job process is performing these steps, another polling takes place and the very
same work order is detected a second time (we’ve actually seen the same work order get
detected three times on a system with a very busy file system!). The result is that the
second polling will not find the work order between the time it notices it and the time it’s
ready to move the work order into the job subdirectory. It’s been poached! You end up
with a job subdirectory with no work order in it and the Station process forked off for that
job fails. So, be cautious.

For example:

$cfg polling interval = 120;

4.4.3 Stop Interval ($cfg_stop_interval)

The $cfg_stop interval is the number of seconds between polls of the station directory to
look for STOP work orders. The default is the $cfg_polling_interval.

Stopping a station in S4P is accomplished via a STOP work order being dropped into the
station directory. By default, a STOP work order will only be detected at the polling
frequency set for all work orders, the $Scfg_polling_interval. When $cfg_polling_interval
is very large, stopping a station may take too long. Therefore, a separate more frequent
poll can be set up to look exclusively for STOP work orders. The polling interval is
$cfg stop_interval.

For stations whose $cfg polling interval is the default (five seconds), it may not be
necessary to have a more frequent polling cycle for STOP work orders.

For example:

$cfg polling interval = 120;
$cfg stop interval = 5;

9/25/2008 26

S4P Users Guide: 4. Station

4.4.4 End Interval ($cfg_end_job_interval)

The $cfg_end job_interval sets the number of seconds between polls of the Station child
process to look for END JOB NOW, SUSPEND JOB NOW, and
RESUME JOB NOW work orders. It works much the same way as $cfg stop interval,
but applies to the suspend and resume functions. This parameter is only relevant when
$cfg group (Section 4.4.12) is specified; it is ignored otherwise. When $cfg group is
specified, the default is $cfg_stop_interval (Section 4.4.3).

For example:

$cfg _end job interval = 3;

4.4.5 Process Deadline ($cfg_deadline)

The $cfg_deadline parameter is the number of seconds beyond which Station will end the
process that it is running. The default is no deadline. This can be useful in stations where
the processing should be quick and a significant slow down may indicate a problem. It is
recommended that the deadline be set well beyond the expecte